医疗机器人控制系统的应用与产业化

朱琪

-/先进制造与自动化

医疗机器人控制系统主要应用于微创手术机器人,一种利用工控机、多个可编程多轴控制器、数据采集卡构建的机器人上层控制系统,并进行算法优化,进一步提高机器人响应速度和精准度,实现系统的稳定通讯和实时控制,同时以霍尔传感器为基础,结合电机运动信号的零位确定机器人运动初始位置,提高了系统可靠性,同时大大降低了成本。

本项目拥有自主知识产权,项目规划阶段已经完成总体进度的5%; 项目蓝图设计阶段已经完成总体进度的25% ;项目系统测试阶段已经完成总体进度的60%;项目上线切换阶段截止到目前,该项目已经完成总体进度的85%; 项目总结阶段截止到目前,该项目已经完成总体进度的96%。

    本项目目前需要场地200平米,资金700万左右,已通过权威部门的技术鉴定、环保评价等。本项目能够快速捕捉机相关领域前沿热点,以及领域内的最新研究成果和前沿进展,并能够精准锁定爆款产品。目前已有注册用户36万,具有一定的影响力。

    本项目研发团队核心成员均是留学海外的博士,具有扎实基础理论知识与雄厚的技术研发实力,在国际工业机器人及其零部件行业有多年的从业经验和技术积累,所研发生产的物联网数据采集产品已达到国际一流水平,能为本项目顺利实施提供坚强的技术与管理支撑。

具有腰部自由度四足机器人的控制技术

科技处

-/先进制造与自动化

轮式机器人稳定性好,移动速度快,但是对复杂地形的适应能力较差,轮式以及履带式的移动工具能到达的地方不及地球陆地的一半,而具有腿式结构的动物几乎可以到达地球的任何一个地方;受此启发,腿式机器人得到迅速发展,弥补了地形适应能力差的缺点。腿式机器人中,四足机器人由于其良好的稳定性,较简单的结构以及仿生特点得到了比较好的发展。最常见的四足机器人的结构是每条腿部结构具有3个自由度,包括2个髋关节自由度和1个膝关节自由度,整机共12个自由度,在此结构基础上的改进型结构将具有更良好的性能。
机器人的控制方法决定机器人的性能;常见的仿生机器人的控制方法主要分为基于模型的控制方法以及基于CPG(中枢模式发生器)的控制方法。其中基于模型的控制方法包含基于稳态判据的控制方法,基于弹簧负载倒立摆模型的控制方法,基于虚拟模型的控制方法以及逆动力学方程的方法,具有控制较为精确的优点。CPG方法模仿动物产生节律运动的组织,此方法结构简单,具有很强的鲁棒性和适应能力。对于改进型结构的四足机器人,其控制对象自由度更高,控制起来更加复杂。因此选择合适的方法应用于带有腰部自由度的四足机器人,才能实现其性能较佳的运动效果。
本项目研发了一种具有腰部自由度四足机器人的控制技术,简洁高效易于实现,且控制精度较高,并设计了将控制技术应用于机器人的硬件控制系统。

基于LED阵列的高速空间光调制方法及其成像系统

科技处

-/电子信息

单像素探测是关联成像区别于传统面阵探测成像的主要特点,它指关联成像使用一个或几个单像素探测器,而非面阵探测器(如CCD,CMOS等),来接收目标信号并重建其空间信息。单像素探测器技术成熟可靠、信号收集能力强,没有面阵探测器的像素间响应不均、存在坏点和对成像光学系统要求高等问题,尤其在特定探测波段的面阵探测器特别昂贵甚至不存在的情况下和需要多谱段复合成像的要求时,单像素关联成像为相应的目标探测提供了技术可行、成本可控、体积重量小的成像方案。
计算关联成像的单像素探测体制使关联成像技术必须依赖于某种空间光调制器件来实现成像,目前常规的方法包括采用激光照射旋转毛玻璃产生赝热光源,预制相位掩膜板,透射式液晶调制和反射式微透镜阵列(DMD)调制等。由于空间光调制器的调制速度有限(上述方法中最快的DMD目前达到22KHz调制速度),极大限制了关联成像获取目标信息的速度,是其技术发展的瓶颈问题,也是相关领域科学工作者亟待攻克的难点。
针对现有关联成像的成像速度受空间光调制器调制速度限制的问题,本项目研制了一种基于LED阵列的高速空间光调制技术及其成像系统,对关联成像速度实现了极大的提升,空间光调制速度达到了2.5MHz,成像速度达到了5KHz。

家庭智能监控防盗系统

科技处

-/电子信息

目前监控摄像机在商业应用中已经普遍存在,但并没有充分发挥其实时主动的监督作用,因为它们通常是将摄像机的输出结果记录下来,视频监控系统只能提供监控区域的图像,对监控区域的监控、对目标对象的识别、分析、辨别、跟踪等完全依靠人来进行。当异常情况(如停车场中的车辆被盗)发生后,保安人员才通过记录的结果观察发生的事实,但往往为时已晚。而我们需要的监控系统应能够每天连续24小时的实时监视,并自动分析摄像机捕捉的图像数据,当盗窃发生或发现到具有异常行为的可疑的人时,系统能向保卫人员准确及时地发出警报,从而避免犯罪的发生,同时也减少了雇佣大批监视人员所需要的人力、物力和财力的投入;在访问控制场合,可以利用人脸识别技术以便确定来人是否有进入该安全领域的权利。

针对市场需求,该项目研发出一种家庭智能监控防盗系统,包括智能监控系统、自动报警系统和网络服务器。该系统通过独有的环境和背景建模方法,解决遮挡情况下多目标跟踪和分割,实现海量监控目标的实时排查任务,实现完全自动的、实时监控和报警,达到真正意义上的智能监控,从而保证用户家庭安全。所采用的技术方案是:一套利用摄像头、智能监控分析系统和手机的结合达到的智能监控防盗系统。由智能监控系统、报警系统和网络服务器三部分组成,各部分之间通过Internet连接在一起。智能监控系统由宽带网络连接,手机通过GPRS/TD-SCDMA/WCDMA与智能监控系统相连。各部分之间通过TCP/IP通信,系统之间通过TCP方式通信。智能监控系统将摄像头录制的视频存储在网络视频服务器中,供智能视频分析系统分析视屏中的人物信息,从而实现监控视频中是否有陌生人进入,对进入的陌生人进行人脸识别,将人脸信息发送至用户手机,实现用户远程监控家庭安全的目的。

该项目开发出的家庭智能监控防盗系统实现了智能视频监控、自动报警与人工报警的完美结合,最大限度降低了用户的财产损失。本系统有全系统智能控制和远程监控的特色,可以适用于多种监控应用场景。

基于区块链潜信道技术的电子证据保存系统

科技处

-/电子信息

随着信息技术的发展与计算机网络的普及,电子证据作为大量电子商贸活动与网络交往活动的衍生品,已经在版权保护、商业维权、虚拟财产、移动办公等方面的取证与相关部门管理中扮演着越来越重要的角色。目前,大多数电子证据保存架构都是基于第三方的中心化云存储结构,除了其所带来的高成本、高维权壁垒、操作复杂、可扩展性差等服务体验问题,电子证据又具有独特的脆弱性,表现在其易于被篡改与复制,在丰富的格式转换中出现差错与故障,使得电子数据的安全性差。一旦第三方中心架构的存储节点被入侵,将会导致信息泄露、电子证据失效或被伪造等诸多严重的问题,并且服务提供方是否可信、合作的机构是否权威、其操作的透明性、规范性与合法性,都将对电子证据的安全性造成影响,而且,多个第三方机构的处理规范与取证接口良莠不一,且数据不互通且服务不兼容,从而为司法部门建立电子证据处理标准带来消极的影响。
在相关技术中,去中心化的区块链技术及其应用自比特币的出现以来,以其良好的数据安全性与匿名性风靡全球,而其配合共识机制达到“无需信任”的应用效果,完美的解决了诸多敏感场景下的信任问题。然而,相关技术中保存电子数据的成本高,且时效性差,无法满足大部分用户的使用需求,有待解决。为此,本成果提出一种基于区块链潜信道技术的电子证据保存系统,该系统可以提高电子数据保存的安全性和时效性,有效降低保存成本。

集成化核磁共振陀螺磁场闭环数字控制系统

科技处

-/电子信息

核磁共振陀螺仪以磁场控制为主要的原子操控方式之一,磁场的操控精度决定了核磁共振陀螺仪内部参考的准确与稳定,同时,磁场闭环控制作为核磁共振陀螺仪跟踪系统转动信号的共振激励源和频率测量单元,其闭环控制的精度与陀螺仪输出性能指标,如精度、漂移、噪声特性等直接相关。现有的核磁共振陀螺磁场闭环主要采用商用仪器在实验室中进行,而商用仪器本身存在限制:1、功能固化,不能灵活的针对核磁共振陀螺仪磁场闭环的需要进行改变;2、性能局限,一些需占用较多硬件资源的数字信号处理方法和控制方法难于应用;3、集成度低,不利于核磁共振陀螺仪整体体积的减小和功耗的降低。因此,一种集成化核磁共振陀螺磁场闭环数字控制系统是必需的。
本项目研发了一种集成化核磁共振陀螺磁场闭环数字控制系统,包括输入信号接口模块、模数转换芯片、FPGA模块、DSP模块、数模转换芯片、输出信号接口模块、通信接口模块。该装置通过输入信号接口模块和模数转换芯片获取核磁共振陀螺物理表头的光电检测信号,FPGA模块一方面对含有高频载波的光电检测信号进行一次解调得到平行分量和正交分量,另一方面对一次解调的平行分量进行二次解调,FPGA模块解调的数据传送给DSP模块,DSP模块按照一定的控制算法生成控制量,数模转换芯片和输出信号接口模块把控制量转换成模拟量传送到电流源电路,产生核磁共振陀螺线圈所需的控制电流,从而实现对核磁共振陀螺磁场的闭环控制,使得核磁共振陀螺控制装置的集成度大幅提高。
与现有核磁共振陀螺信号处理和控制的商用设备比较具有以下特点:(1)较实验室通用的商用仪器而言,本发明具有功能灵活的优点:磁场闭环数字控制系统可以针对核磁共振陀螺仪磁场闭环的需要进行实时的控制,便于实现复杂的控制算法,提高核磁共振陀螺磁场操控精度。(2)本发明对核磁共振陀螺调制频率信号进行高频载波和核子谐振频率的解调采用FPGA芯片,FPGA的并行性提高了信号处理的实时速度,大大减小了系统延时,提高了系统的稳定性。(3)采用FPGA芯片完成模数转换芯片的驱动控制,FPGA高速的对信号进行采样和预处理,兼顾速度及灵活性,同时DSP芯片用于处理数据量少,控制结构的复杂算法,充分发挥了每个模块的优点,提高了算法效率。(4)本发明结构灵活,有较强的通用性,适于模块化设计,同时开发周期较短,系统易于维护和扩展,适于实时信号处理与控制。(5)集成度高,大幅度减小系统体积和控制器功耗,这对于核磁共振陀螺磁场闭环功能的实现很有意义,且为核磁共振陀螺小型化和高精度奠定基础。

加快机场跑道尾涡消散技术

科技处

-/电子信息

当今航空运输业发展迅猛,我国航空年吞吐量实现了年均10%以上的增长。吞吐量的增加导致了机场航班起降频次的增加,也导致飞机起降间隔时间越来越短。而大型飞机的尾涡核心区域最大速度甚至会达到360km/h,速度剪切很强,湍流度也很高,两个尾涡之间更是会产生极强的下洗气流,后续的飞机在前机尾涡尚未消散前穿行其中会遭遇到严重的安全隐患,发生飞行高度快速下降、滚转、翻转失控、抖动和发动机停机等安全事故。
为了减轻和预防尾涡的危害,当前世界上航空技术领先的各国主要采取了两种措施:在机翼上施加流动控制技术减弱翼尖涡和限制机场起降间隔。前一种方法需要改造飞机结构,会影响飞行效率且不易实施;后者只是被动等待尾涡自然消散,无法加快其消散过程进而缩短飞机起降间隔,目前也鲜见有采用主动控制手段加快飞机尾涡消散的技术。
为了减小或降低当前飞机尾涡危害,本项目提出了一种通过主动流动控制加快机场跑道尾涡消散技术,所述方法采用易于布置在跑道表面的等离子射流激励器阵列,进行主动流动控制以加快跑道上空飞机尾涡的衰减,在不改造飞机结构和不影响飞行效率的前提下提升飞机起降过程中的飞行安全水平,缩短飞机起降间隔,提高机场运营效率。
该技术通过在机场跑道表面沿展向布置等离子射流激励器阵列,在脉冲电信号的激励下该等离子射流激励器阵列会产生沿流向的等离子射流,这一等离子射流会在短时间内诱导出一个沿展向分布的射流旋涡,此射流旋涡又会在流向等离子射流的作用下持续增强;与此同时由于飞机尾涡的诱导,此射流旋涡会向上运动并逐渐包绕在飞机尾涡周围,增加飞机尾涡的不稳定性并加快飞机尾涡的消散。每个等离子射流激励器阵列沿跑道展向布置,包括沿展向设置的底座、在底座上沿展向布置的多个等离子射流激励器、外露电极供电电缆、掩埋电极供电电缆、外露电极激励信号接入点和掩埋电极激励信号接入点;所述的等离子射流激励器由绝缘层、硅胶板、外露电极和掩埋电极组成,所述的绝缘层嵌入底座的凹槽中,掩埋电极嵌入在绝缘层的凹槽中,掩埋电极上方覆盖硅胶板实现掩埋电极与空气的绝缘;外露电极粘贴于硅胶板外侧与空气接触,外露电极的高度高于掩埋电极的高度,二者的流向方向不交叠;外露电极的高度高于底座的上表面;所述的外露电极供电电缆将所有等离子射流激励器的外露电极并联后,在外露电极激励信号接入点连接到控制系统,所述的掩埋电极供电电缆将所有等离子射流激励器的掩埋电极并联后,在掩埋电极激励信号接入点连接到控制系统,所述的外露电极和掩埋电极的激励信号由控制系统产生。
本发明有益效果在于:1. 可以主动加快尾涡消散,不需要改造飞机,也不必被动等待尾涡的自然消散。2. 利用了旋涡动力学的原理,通过增加尾涡的不稳定性来加快其消散,可以用能量较小的射流涡来加快能量较大的尾涡的消散,效率较高,尾涡的消散时间小于50s。3. 只需要在已有的机场跑道基础上直接加装厚度为毫米量级的等离子射流激励器,易于实施。并可以根据调整等离子射流激励器的个数和位置,控制飞机尾涡的消散时间。4. 等离子射流激励器只需要脉冲电信号的输入,不需要复杂的机械结构,便于控制,可靠性高。

钎焊及检测装置

科技处

-/先进制造与自动化

钎焊作为重要的连接技术,对于新材料的连接以及复杂精细结构的制造,具有独特的灵活性和优越性,但是传统的钎焊方法主要使用真空钎焊耗能较大,钎焊时间长且钎焊过程不可控,无法对焊接接头的形成过程以及焊接缺陷进行动态分析,真空钎焊和瞬时液相(TLP)扩散焊虽然较传统的钎焊方法有较大的优势,但仍采用真空钎焊炉施焊,无法解决焊接效率低,不能对焊接组织演变实时监测的问题。如何改变现有技术中,钎焊焊接效率低且无法对焊接过程实时监控的现状,是本领域技术人员亟待解决的问题。
该项目研发出一种钎焊及检测装置,包括真空系统、负载系统、温控系统和检测系统,负载系统包括原位载荷机和夹具,夹具设置于真空室的内部,原位载荷机与夹具相连,温控系统包括热像图观测装置、加热模块和冷却模块,加热模块设置于真空室的内部,冷却模块与真空室相连,热像图观测装置设置于真空室的外部,检测系统包括检测装置和控制器,检测装置与控制器相连,真空系统、负载系统和温控系统分别与检测系统相连。本发明实现了钎焊过程中升温、降温速率可调可控,提高工作效率,同时能够实现单次焊接过程各钎焊工艺参数多变量组合效应,对钎焊接头组织结构演变的原位实时检测分析,在焊接结束后对接头性能做出进一步的评价。

磁性螺旋形游动微机器人

科技处

-/生物与新医药

伴随微纳米科学技术的发展,微纳机器人得到了广泛关注,尤其是在生物医药和微系统方面具有非常重要的潜在应用。受大肠杆菌等微生物通过鞭毛旋转产生推进运动的启发,磁性螺旋形游动微机器人作为一种磁控微机器人受到研究者普遍关注。在外加旋转磁场作用下,磁性螺旋形游动微机器人的特殊螺旋形结构可产生轴向推进力,在低雷诺数液体环境中实现高效可控的运动,从而完成微小尺度的任务要求。在微纳尺度精准操控、靶向药物运输等前沿领域具有重要的研究价值。
传统的机械加工方法难以实现微米尺度三维微螺旋结构的批量制造,而新兴的三维激光直写技术等微纳加工方法也存在制造成本高、制造效率低等不足,限制了磁性螺旋形游动微机器人的发展应用。此外,包括磁性螺旋形游动微机器人在内的所有磁性微机器人,都要求具有对其实现简单便捷运动操控的三维可控旋转磁场,且三维可控旋转磁场是实现对该类微机器人精准操控的一种必要手段,而现有三维可控旋转磁场多存在结构庞大、控制复杂、集成度不高等问题,不便于操控微米尺度的磁性微机器人。
该项目研发出一种磁性螺旋形游动微机器人,其制备方法包括:选取螺旋藻生物模板、固定强化、胶态钯活化、解胶、化学镀镍、清洗烘干;螺旋藻生物模板的结构参数与用户所需磁性螺旋形游动微机器人的结构参数相同。该机器人操控系统包括:线圈部、容器平台、三个驱动器、三个直流电源、数字量模拟量转换装置、上位机以及观测记录装置等。

飞机道面拦阻的双曲波纹夹心防护结构

科技处

-/新材料

随着现代人类对民航运输业需求的增加,飞机冲出跑道的事故时有发生,近十年的统计数据表明飞机发生冲出跑道端的次数逐年增加,已经对飞机和乘员安全产生严重威胁。国际民航组织规定必须设置300m的跑道端安全区。然而很多机场囿于周围建筑物、水域等地形的限制而无法延长跑道,没有足够空间设置跑道端安全区,形成了很大的安全隐患。鉴于这种情况,国际飞行员联合会建议安装一种工程材料拦阻系统(Engineered Material Arresting System,EMAS)来拦停冲出跑道的飞机。通常EMAS由轻质泡沫混凝土构成,铺设于机场跑道末端。当飞机冲出跑道进入泡沫混凝土后,在机轮的碾压下该泡沫混凝土能够快速碎化形成压溃阻力,使飞机平稳减速并最终停止,实现飞机的安全拦阻。但是泡沫混凝土存在易老化、耐水性能差及压溃后产生大量粉尘的问题。此外,波纹夹芯板以其比强度高、比刚度大、抗冲击和耐疲劳等优点,被广泛地应用在航空航天、船舶、高速列车等工程领域。其主要由上下表层面板以及中间波纹夹芯层构成,一般通过直接胶接法或者预浸料后固化法复合而成。传统的波纹夹心板主要包括三角形波纹板、梯形波纹板以及正弦形波纹板,然而这些夹芯板并不能满足飞机道面拦阻的吸能要求且其具有典型的各向异性特性。因此,如何在解决泡沫混凝土材料老化、耐久性及环境等问题的前提下增加波纹结构的能量吸收效率,是提高对冲出跑道飞机拦阻防护安全的当务之急。
该项目开发出一种应用于飞机道面拦阻的双曲波纹夹心防护结构,该夹心结构包括上层面板、波纹芯层以及下层面板。不同于传统的夹心结构,其夹芯层为双曲波纹结构,沿结构的横向和纵向呈现正交的正弦波纹状外形,可通过调整双曲波纹夹心层的振幅、周期以及堆积层数来构造不同几何形状的双曲波纹夹心板。可铺设于机场跑道末端,当飞机由于意外冲出跑道时,通过机轮碾压双曲波纹夹心板产生塑性变形来吸收飞机的冲击能量使其迅速平稳地减速下来,从而保护乘员的安全。

骨创伤辅助诊断救治平台

科技处

-/生物与新医药

骨创伤患者具有病情复杂、病变迅速、死亡率高等特点。因此,第一时间内进行有效的诊断和救治,将为后续诊治赢得时机,对提高治愈率有重要意义。针对这种情况,世界各国积极开展了对骨创伤患者进行及时救治方法的研究。目前,骨创伤诊断和救治功能集于一身的治疗平台,因其便携性、功能多样性等优势越来越受到人们的重视,具有广阔的市场前景。这种平台集中各种检测装置和诊治设备,可在现场进行急救,缩短了骨创伤患者救治的准备时间。目前,世界各国展开了相关研究,同时也存在着一些问题:如部分功能冗余,结构复杂,灵活性较差、不能为医生远程诊治提供生命体征数据和诊治数据等。
该项目开发出一种骨创伤辅助诊断救治平台,其包括平台本体及平台底座,还包括体温保持装置、光学定位模块、用户交互模块、电源模块、无线数据传输与GPS定位模块、呼吸机模块、吸引器模块、供氧模块、心颤救治模块、多参数监护仪模块、输液模块、急救用品存储箱、牵引夹板、B超机和X光机;既具有一般手术平台的通用性又能为骨创伤患者提供辅助诊断功能和初步救治功能。通过无线数据传输模块将患者的生命体征数据和诊治数据传输出去,为远程诊治提供依据。在患者转运的过程中,通过GPS定位模块可以获得位置信息,实时对患者目标位置的路线规划。

社区智能垃圾云监管系统

科技处

-/电子信息

垃圾处理一直是城市规划、管理的主要事务。当前面向社区的垃圾处理方案还停留在简单地增加垃圾桶容量及数量的方法。例如,按照社区居民楼的分布,均匀地布置一定数量的垃圾桶。然而,在现实生活中,例如存在居民家庭人口数量不均而产生的垃圾量不同的情况,均匀分配垃圾桶数量会造成社区中有的地点垃圾桶常常满溢,而有的地点垃圾桶常常不满的情况。另外,现有的社区垃圾处理方式要求保洁人员时时巡视社区内的垃圾桶以便及时处理,这增大了保洁人员的工作强度,也没有提高垃圾处理的效率。鉴于以上问题,本项目通过云服务器技术实现了一种社区智能垃圾云监管系统及操作方法,其可以面向城市、社区、学校等不同应用场合和区域,智能提醒管理员和/或保洁人员管辖范围内哪些垃圾桶已满需要清理、高效率地解决社区垃圾管理问题、节省人力资源、规范用户扔垃圾的习惯,为整个智慧城市建设提供支持。
社区居民在向垃圾桶扔垃圾时,垃圾桶可以感测垃圾重量及高度信息。若桶内垃圾未满,垃圾桶将数据传输至设置于云服务器的数据管理系统。若桶内垃圾已满,在居民准备扔垃圾时,垃圾桶可以感知到有人时,垃圾桶将给出语音提示,并告知附近最短距离其他可以使用的垃圾桶。社区保洁人员可以通过用户终端模块查看垃圾桶状态,当垃圾桶内垃圾已满,保洁人员会接收到来自用户终端模块的垃圾桶已满的消息,此时保洁人员需要到达垃圾桶处,保洁人员可以利用RFID无线射频卡与垃圾桶的RFID感应区相互作用。此时,垃圾桶记录到保洁人员信息、垃圾桶内垃圾的高度信息及重量信息,并将数据传输至数据管理系统。数据传输功能可以通过移动通信技术(例如GPRS)传输数据,采用TCP/IP技术实现。所传输的数据包括垃圾桶内垃圾的重量信息及高度信息、GPS信息、保洁人员信息等。在云服务器运行的数据管理系统随时与多个垃圾桶建立TCP/IP连接,在建立与垃圾桶的TCP连接后,可以接收数据,在接收到数据后,对数据进行解析,例如从数据中提取垃圾桶节点号、垃圾桶名称、垃圾桶内垃圾高度数据、垃圾桶内垃圾重量数据、保洁人员信息等,并且存储已处理的数据。并且,数据管理系统还可以通过算法对所存储的数据进行处理,以生成最新数据值,同时也可以获得垃圾桶在一个时间段内的垃圾数据,以及保洁人员作业量。管理人员也可以通过用户终端模块获取数据管理系统处理并且存储的数据,以进行垃圾桶管理、垃圾量查询、垃圾量报表查询、垃圾量实时热力图显示、保洁人员管理、垃圾桶分布图查看等功能。
本项目实现了一种社区智能垃圾云监管系统及操作方法,其可以面向城市、社区、学校等不同应用场合和区域,智能提醒管理员和/或保洁人员管辖范围内哪些垃圾桶已满需要清理、高效率地解决社区垃圾管理问题、节省人力资源、规范用户扔垃圾的习惯,实现垃圾产生环节的监管,未来实现垃圾从产生到运输、分类、处理、回收整个流程的监管。环卫部门可以获取社区内一定时间产生的垃圾数据,例如每月平均垃圾量数据等。这些数据可以为保护环境,节约资源提供数据支持,更为以后的智能城市建设提供数据支持。

无Ni且低Cu的Ti-Zr-Cu-Co-Fe合金钎料

科技处

-/新材料

钎焊是当今高技术中一种精密连接技术,在决定钎焊质量的众多因素中,钎料处于重要地位。在航空航天领域,钛合金作为性能较好的轻质金属材料获得了广泛应用,其一些构件以钎焊接头的形式使用。钛合金连接使用较普遍的是钛基钎料,这是由于其钎焊接头具有良好的高温强度和耐腐蚀性能,是钛合金用钎料的理想选择。但是,由于钛合金的钎焊温度需低于其β转变温度,为降低钛基钎料熔点而加入了较多的Cu、Ni元素(普遍≥20wt%),钎焊时Cu、Ni与母材中的钛反应生成Ti-Cu、Ti-Ni等脆性金属间化合物,导致钎焊接头存在着很大的脆性,降低连接强度,使得一些钛合金钎焊构件的安全可靠性仍有所不足,并限制着钛合金钎焊构件在飞机和航空发动机上的设计与应用。因此研发一种Cu和Ni元素总量更低同时熔点低的新型高性能急冷态钛基合金钎料,对于航空航天等高精端技术的发展具有重要意义。
该技术基于相似相异元素共存(Ti-Zr、Cu-Co和Co-Fe相似元素对)的成分设计思路,加入相似元素Co、Fe置换Ni元素以及部分置换Cu元素,获得低熔点Ti-Zr-Cu-Co-Fe非晶或者非晶/纳米晶合金钎料。本发明无Ni且Cu含量低的Ti-Zr-Cu-Co-Fe合金钎料综合考虑了非晶形成能力,钎料的熔点和接头强度,成功设计并采用熔体旋淬法制备了无Ni且Cu含量低、液相线温度(Tl)低的新型钛锆基非晶或者非晶/纳米晶合金钎料。其中Cu、Co、Fe合金元素的主要作用是降低钎料熔点、提高钎料的非晶形成能力以及提高接头强度。Cu与Ti和Zr形成共晶而获得低熔点的合金钎料,同时Cu元素可以提高钛锆基钎料合金的非晶形成能力。Co元素依据相似相异元素共存原则(Cu-Co、Co-Fe)加入,可以提高钛锆基钎料的非晶形成能力;降低钛合金的共析转变速度,降低钎焊接头脆性,提高钎焊接头的强度。Fe元素依据相似相异元素共存原则(Cu-Fe、Fe-Co)加入,可以提高钛锆基钎料的非晶形成能力;同时Fe元素对钛合金β固溶体具有较好的强化效果。
通过熔体旋淬法制得厚度为20~60微米的非晶或者非晶/纳米晶薄带状合金钎料,薄带连续、韧性和表面质量优良、厚度均匀可调,钎焊接头最大剪切强度高达347MPa。

原油罐底板腐蚀产物状态的无损检测系统

科技处

-/先进制造与自动化

储罐在长时间沉积原油之后,在罐底部会形成一层沉积的水。储罐底部存在沉积水和外部应力对低碳钢的腐蚀有很大的影响。原油储罐长期暴露在复杂应力及腐蚀环境中,日积月累产生点蚀等微裂纹影响使用。原油经过长时间的沉积,罐底部形成一层沉积水,沉积水中杂质成分对底板的腐蚀有很大的影响。在所有失效模式下,应力腐蚀断裂(Stress Corrosion Cracking,SCC)特别严重且危险。为了确保这些结构的安全可靠性,有必要监测原油储罐的应力腐蚀行为。而应力腐蚀是造成其失效的主要原因,为此要对其损伤状态作出有效的识别,及时、正确地评价C-Mn钢原油储罐的损伤程度,为其安全运行及寿命预测提供依据。
为了实时对在役的原油罐进行腐蚀程序的监督,尽早进行事故预警,本项目设计了一种符合在役原油罐的底板腐蚀情况的无损检测系统。该无损检测系统对原油罐底板的监测分为内部电化学分析,外部声发射分析;复合两者的采集信息对原油储罐的应力腐蚀情况以及损伤位置进行无损判别,从而进行腐蚀损伤的情况判断。本发明系统在不破坏原油储罐的情况下,可以准确得到浸泡在沉积水中的底板的腐蚀产物膜的生成、裂纹萌生以及破裂情况,从而能够判断原油储罐底板的应力腐蚀情况和破坏情况,减少由于应力腐蚀造成的设备、经济损失。

共 1685 条 前往




工作日 9:00 —17:30

客服电话:

公众号

科创海

微信扫一扫,关注我们哦~

回顶部